Beyond-classical computation in quantum simulation

成果类型:
Article
署名作者:
King, Andrew D.; Nocera, Alberto; Rams, Marek M.; Dziarmaga, Jacek; Wiersema, Roeland; Bernoudy, William; Raymond, Jack; Kaushal, Nitin; Heinsdorf, Niclas; Harris, Richard; Boothby, Kelly; Altomare, Fabio; Asad, Mohsen; Berkley, Andrew J.; Boschnak, Martin; Chern, Kevin; Christiani, Holly; Cibere, Samantha; Connor, Jake; Dehn, Martin H.; Deshpande, Rahul; Ejtemaee, Sara; Farre, Pau; Hamer, Kelsey; Hoskinson, Emile; Huang, Shuiyuan; Johnson, Mark W.; Kortas, Samuel; Ladizinsky, Eric; Lanting, Trevor; Lai, Tony; Li, Ryan; MacDonald, Allison J. R.; Marsden, Gaelen; McGeoch, Catherine C.; Molavi, Reza; Oh, Travis; Neufeld, Richard; Norouzpour, Mana; Pasvolsky, Joel; Poitras, Patrick; Poulin-Lamarre, Gabriel; Prescott, Thomas; Reis, Mauricio; Rich, Chris; Samani, Mohammad; Sheldan, Benjamin; Smirnov, Anatoly; Sterpka, Edward; Trullas Clavera, Berta; Tsai, Nicholas; Volkmann, Mark; Whiticar, Alexander M.; Whittaker, Jed D.; Wilkinson, Warren; Yao, Jason; Yi, T. J.; Sandvik, Anders W.; Alvarez, Gonzalo; Melko, Roger G.; Carrasquilla, Juan; Franz, Marcel; Amin, Mohammad H.
署名单位:
University of British Columbia; Jagiellonian University; University of Toronto; Vector Institute for Artificial Intelligence; University of Waterloo; Max Planck Society; Boston University; United States Department of Energy (DOE); Oak Ridge National Laboratory; Perimeter Institute for Theoretical Physics; Swiss Federal Institutes of Technology Domain; ETH Zurich; Simon Fraser University
刊物名称:
SCIENCE
ISSN/ISSBN:
0036-11564
DOI:
10.1126/science.ado6285
发表日期:
2025-04-10
页码:
199-204
关键词:
matrix product states renormalization-group PHASE-TRANSITION spin-glass colloquium entanglement optimization supremacy DYNAMICS
摘要:
Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. However, establishing this capability, especially for impactful and meaningful problems, remains a central challenge. Here, we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schrodinger equation. We demonstrate area-law scaling of entanglement in the model quench dynamics of two-, three-, and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for matrix-product-state approaches. We show that several leading approximate methods based on tensor networks and neural networks cannot achieve the same accuracy as the quantum annealer within a reasonable time frame. Thus, quantum annealers can answer questions of practical importance that may remain out of reach for classical computation.