Physics solves a training problem for artificial neural networks
成果类型:
Editorial Material
署名作者:
Querlioz, Damien
署名单位:
Institut Polytechnique de Paris; Ecole Polytechnique; Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay; Universite Paris Cite
刊物名称:
Nature
ISSN/ISSBN:
0028-5033
DOI:
10.1038/d41586-024-02392-8
发表日期:
2024-08-08
页码:
264-265
关键词:
摘要:
Systems that emulate biological neural networks offer an efficient way of running AI algorithms, but they can't be trained using the conventional approach. The symmetry of these 'physical' networks provides a neat solution.