GABAergic neuron-to-glioma synapses in diffuse midline gliomas
成果类型:
Article
署名作者:
Barron, Tara; Yalcin, Belgin; Su, Minhui; Byun, Youkyeong Gloria; Gavish, Avishai; Shamardani, Kiarash; Xu, Haojun; Ni, Lijun; Soni, Neeraj; Mehta, Vilina; Maleki Jahan, Samin; Kim, Yoon Seok; Taylor, Kathryn R.; Keough, Michael B.; Quezada, Michael A.; Geraghty, Anna C.; Mancusi, Rebecca; Vo, Linh Thuy; Castaneda, Enrique Herrera; Woo, Pamelyn J.; Petritsch, Claudia K.; Vogel, Hannes; Kaila, Kai; Monje, Michelle
署名单位:
Stanford University; Howard Hughes Medical Institute; Stanford University; Stanford University; Stanford University; University of Helsinki; University of Helsinki
刊物名称:
Nature
ISSN/ISSBN:
0028-3141
DOI:
10.1038/s41586-024-08579-3
发表日期:
2025-03-27
关键词:
oligodendrocyte precursor cells
histone h3.3
high-grade
receptors
gaba
摘要:
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling1,2 and neuron-to-glioma synapses3, 4, 5-6. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatric3 and adult4 high-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses7. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABAA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation3,6, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.