Vertical structure of an exoplanet's atmospheric jet stream

成果类型:
Article
署名作者:
Seidel, Julia V.; Prinoth, Bibiana; Pino, Lorenzo; dos Santos, Leonardo A.; Chakraborty, Hritam; Parmentier, Vivien; Sedaghati, Elyar; Wardenier, Joost P.; Jentink, Casper Farret; Osorio, Maria Rosa Zapatero; Allart, Romain; Ehrenreich, David; Lendl, Monika; Roccetti, Giulia; Damasceno, Yuri; Bourrier, Vincent; Lillo-Box, Jorge; Hoeijmakers, H. Jens; Palle, Enric; Santos, Nuno; Mascareno, Alejandro Suarez; Sousa, Sergio G.; Tabernero, Hugo M.; Pepe, Francesco A.
署名单位:
European Southern Observatory; Centre National de la Recherche Scientifique (CNRS); Universite Cote d'Azur; Observatoire de la Cote d'Azur; Lund University; Istituto Nazionale Astrofisica (INAF); Space Telescope Science Institute; Johns Hopkins University; University of Geneva; Universite de Montreal; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Astrobiologia (INTA); European Southern Observatory; University of Munich; Universidade do Porto; Universidade do Porto; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Centro de Astrobiologia (INTA); Instituto de Astrofisica de Canarias; Universidad de la Laguna; Complutense University of Madrid; Complutense University of Madrid
刊物名称:
Nature
ISSN/ISSBN:
0028-2376
DOI:
10.1038/s41586-025-08664-1
发表日期:
2025-03-27
关键词:
ultra-hot jupiters spectroscopy temperature
摘要:
Ultra-hot Jupiters, an extreme class of planets not found in our Solar System, provide a unique window into atmospheric processes. The extreme temperature contrasts between their day and night sides pose a fundamental climate puzzle: how is energy distributed? To address this, we must observe the three-dimensional structure of these atmospheres, particularly their vertical circulation patterns that can serve as a testbed for advanced global circulation models, for example, in ref. 1. Here we show a notable shift in atmospheric circulation in an ultra-hot Jupiter: a unilateral flow from the hot star-facing side to the cooler space-facing side of the planet sits below an equatorial super-rotational jet stream. By resolving the vertical structure of atmospheric dynamics, we move beyond integrated global snapshots of the atmosphere, enabling more accurate identification of flow patterns and allowing for a more nuanced comparison to models. Global circulation models based on first principles struggle to replicate the observed circulation pattern2 underscoring a critical gap between theoretical understanding of atmospheric flows and observational evidence. This work serves as a testbed to develop more comprehensive models applicable beyond our Solar System as we prepare for the next generation of giant telescopes.