Scaling and logic in the colour code on a superconducting quantum processor
成果类型:
Article
署名作者:
Lacroix, N.; Bourassa, A.; Heras, F. J. H.; Zhang, L. M.; Bausch, J.; Senior, A. W.; Edlich, T.; Shutty, N.; Sivak, V.; Bengtsson, A.; Mcewen, M.; Higgott, O.; Kafri, D.; Claes, J.; Morvan, A.; Chen, Z.; Zalcman, A.; Madhuk, S.; Acharya, R.; Beni, L. Aghababaie; Aigeldinger, G.; Alcaraz, R.; Andersen, T. I.; Ansmann, M.; Arute, F.; Arya, K.; Asfaw, A.; Atalaya, J.; Babbush, R.; Ballard, B.; Bardin, J. C.; Bilmes, A.; Blackwell, S.; Bovaird, J.; Bowers, D.; Brill, L.; Broughton, M.; Browne, D. A.; Buchea, B.; Buckley, B. B.; Burger, T.; Burkett, B.; Bushnell, N.; Cabrera, A.; Campero, J.; Chang, H. -S; Chiaro, B.; Chih, L. -Y; Cleland, A. Y.; Cogan, J.; Collins, R.; Conner, P.; Courtney, W.; Crook, A. L.; Curtin, B.; Das, S.; Demura, S.; De Lorenzo, L.; Di Paolo, A.; Donohoe, P.; Drozdov, I.; Dunsworth, A.; Eickbusch, A.; Elbag, A. Moshe; Elzouka, M.; Erickson, C.; Ferreira, V. S.; Flores Burgos, L.; Forati, E.; Fowler, A. G.; Foxen, B.; Ganjam, S.; Garcia, G.; Gasca, R.; Genois, E.; Giang, W.; Gilboa, D.; Gosula, R.; Grajales Dau, A.; Graumann, D.; Greene, A.; Gross, J. A.; Ha, T.; Habegger, S.; Hansen, M.; Harrigan, M. P.; Harrington, S. D.; Heslin, S.; Heu, P.; Hiltermann, R.; Hilton, J.; Hong, S.; Huang, H. -Y; Huff, A.; Huggins, W. J.; Jeffrey, E.; Jiang, Z.; Jin, X.; Joshi, C.; Juhas, P.; Kabel, A.; Kang, H.; Karamlou, A. H.; Kechedzhi, K.; Khaire, T.; Khattar, T.; Khezri, M.; Kim, S.; Klimov, P. V.; Kobrin, B.; Korotkov, A. N.; Kostritsa, F.; Kreikebaum, J. Mark; Kurilovich, V. D.; Landhuis, D.; Lange-Dei, T.; Langley, B. W.; Laptev, P.; Lau, K. -m.; Ledford, J.; Lee, K.; Lester, B. J.; Le Guevel, L.; Li, W. Yan; Li, Y.; Lill, A. T.; Livingston, W. P.; Locharla, A.; Lucero, E.; Lundahl, D.; Lunt, A.; Maloney, A.; Mandra, S.; Martin, L. S.; Martin, O.; Maxfield, C.; Mcclean, J. R.; Meeks, S.; Megrant, A.; Miao, K. C.; Molavi, R.; Molina, S.; Montazeri, S.; Movassagh, R.; Neill, C.; Newman, M.; Nguyen, A.; Nguyen, M.; Ni, C. -H; Niu, M. Y.; Oas, L.; Oliver, W. D.; Orosco, R.; Ottosson, K.; Pizzuto, A.; Potter, R.; Pritchard, O.; Quintana, C.; Ramachandran, G.; Reagor, M. J.; Resnick, R.; Rhodes, D. M.; Roberts, G.; Rosenberg, E.; Rosenfeld, E.; Rossi, E.; Roushan, P.; Sankaragomathi, K.; Schurkus, H. F.; Shearn, M. J.; Shorter, A.; Shvarts, V.; Small, S.; Smith, W. Clarke; Springer, S.; Sterling, G.; Suchard, J.; Szasz, A.; Sztein, A.; Thor, D.; Tomita, E.; Torres, A.; Torunbalci, M. Mert; Vaishnav, A.; Vargas, J.; Vdovichev, S.; Vidal, G.; Heidweiller, C. Vollgraff; Waltman, S.; Waltz, J.; Wang, S. X.; Ware, B.; Weidel, T.; White, T.; Wong, K.; Woo, B. W. K.; Woodson, M.; Xing, C.; Yao, Z. Jamie; Yeh, P.; Ying, B.; Yoo, J.; Yosri, N.; Young, G.; Zhang, Y.; Zhu, N.; Zobrist, N.; Neven, H.; Kohli, P.; Davies, A.; Boixo, S.; Kelly, J.; Jones, C.; Gidney, C.; Satzinger, K. J.
署名单位:
Alphabet Inc.; Google Incorporated; Swiss Federal Institutes of Technology Domain; ETH Zurich; Alphabet Inc.; DeepMind; Google Incorporated; University of Massachusetts System; University of Massachusetts Amherst; University of Connecticut; University of California System; University of California Santa Barbara; Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT)
刊物名称:
Nature
ISSN/ISSBN:
0028-1422
DOI:
10.1038/s41586-025-09061-4
发表日期:
2025-09-18
关键词:
error-correction
摘要:
Quantum error correction1, 2, 3-4 is essential for bridging the gap between the error rates of physical devices and the extremely low error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors5, 6, 7-8 have focused primarily on the surface code9, which offers a high error threshold but poses limitations for logical operations. The colour code10 enables more efficient logic, but it requires more complex stabilizer measurements and decoding. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and realizations of colour codes11, 12, 13, 14, 15, 16, 17, 18-19 have not addressed performance scaling with code size on any platform. Here we present a comprehensive demonstration of the colour code on a superconducting processor8. Scaling the code distance from three to five suppresses logical errors by a factor of Lambda 3/5 = 1.56(4). Simulations indicate this performance is below the threshold of the colour code, and the colour code may become more efficient than the surface code following modest device improvements. We test transversal Clifford gates with logical randomized benchmarking20 and inject magic states21, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection. Finally, we teleport logical states between colour codes using lattice surgery22. This work establishes the colour code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.